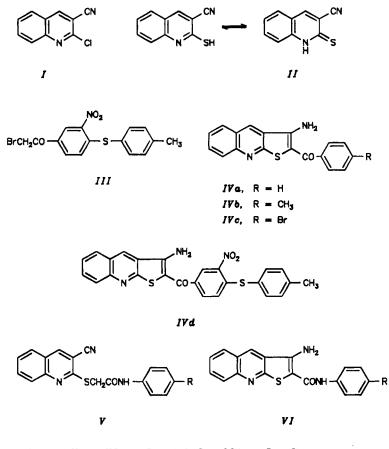
SYNTHESIS AND REACTIONS OF SOME NEW 3-AMINO-2-SUBSTITUTED THIENO[2,3-b]QUINOLINES

Etify Abdel-Ghafar BAKHITE

Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt

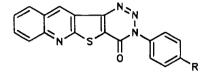
> Received December 18, 1991 Accepted March 13, 1992

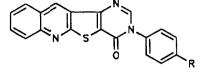

Reaction of 3-cyano-quinolin-2(1H)-thione (II) with ω -bromoacetophenones gave 3-amino-2-aroyl-thieno[2,3-b]quinolines (IVa - IVd). Whereas, interaction of II with chloroacetanilides yielded the corresponding thioethers Va - Vc which cyclized into 3-amino-2-arylcarbamoylthiene[2,3-b]quinolines (VIa - VIc) on treatment with ethoxide. Compounds VIa - VIc were reacted with nitrous acid, triethyl orthoformate and carbon disulfide to afford the fused polycyclic compounds VIIa - VIIc, VIIIa - VIIIc, and IXa - IXc, respectively. Also, treatment of IXa - IXc with ethyl iodide gave 3-ethylthio derivatives Xa - Xc. Moreover, refluxing of VIa - VIc with acetic anhydride resulted in the formation of oxazinone XI which recyclized into pyrimidinones XIIIa - XIIIc upon reaction with aromatic amines.

In continuation of our previous work on thieno [2,3-b] quinolines 1^{-3} , we describe in this paper the synthesis of some new thieno [2,3-b] quinolines and their reactions with different reagents.

The starting compound II was obtained in 95% yield by reaction of 2-chloro-quinoline-3-carbonitrile (I) with thiourea in refluxing methanol. Reaction of II with phenacyl bromide and its derivatives in refluxing ethanol containing triethyl amine gave 3-amino-2-aroyl-thieno[2,3-b]quinolines (IVa - IVc). Similarly, compound II was reacted with 3-nitro-4-tolylthio-phenacyl bromide (III) to afford the corresponding thienoquinoline derivative IVd in high yield.

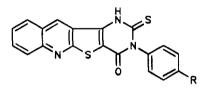
Whereas, reaction of *II* with chloroacetanilide and its derivatives by refluxing in ethanol containing sodium acetate gave 2-arylcarbamoylmethylthioquinoline-3-carbonitriles (Va - Vc). On treatment of Va - Vc with sodium ethoxide in ethanol, the corresponding thienoquinoline derivatives VIa - VIc were obtained in nearly quantitative yields. The latter compounds (VIa - VIc) were also synthesized by one step reaction from *II* and chloroacetanilides in the presence of sodium ethoxide.

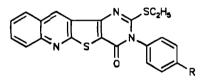

Diazotization of VIa - VIc with sodium nitrite – hydrochloric acid in acetic acid furnished 3-aryl-3,4-dihydro-4-oxo-1,2,3-triazino[4',5':4,5]thieno[2,3-b]quinolines (VIIa - VIIc). In contrast, the pyrimidine analogues VIIIa - VIIIc were obtained smoothly by condensation of VIa - VIc with triethyl orthoformate in refluxing acetic anhydride. Also, interaction of VIa - VIc with carbon disulfide in pyridine led to the formation of 3-aryl-4-oxo-1,2,3,4-tetrahydro-2-thioxopyrimido[4',5':4,5]thieno[2,3-b]quinolines (IXa - IXc). Compounds IXa - IXc were S-ethylated by ethyl iodide in ethanolic sodium hydroxide solution to give 2-ethylthiopyrimidinone derivatives Xa - Xc in good yields. Moreover, heating of VIa - VIc with acetic anhydride at refluxing temperature does not give the expected pyrimidinones XIIIa - XIIIc and instead of, a mixture of oxazinone XI and the corresponding acetanilides XII was obtained. oxazinone XI underwent ring transformation into 3-aryl-2-methyl-3,4-dihydro-4-oxopyrimido-[4',5':4,5]thieno[2,3-b]quinolines (XIIIa - XIIIc) upon treatment with the appropriate aromatic amine.



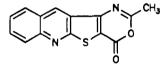
in formulae V and VI : a, R = H; b, $R = OCH_3$; c, R = CL

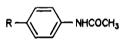
Collect. Czech. Chem. Commun. (Vol. 57) (1992)


The structures of all newly synthesized compounds were confirmed on the basis of their elemental analyses (Table I), IR and ¹H NMR spectra.

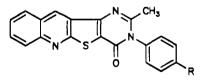


VII





IX



XII

XI

XIII

In formulae VII-X, XII, and XIII : a, R = H; b, R = OCH₃; c, R = CI

EXPERIMENTAL

All melting points are uncorrected. The IR spectra were measured on a Pye-Unicam SP 3-100 spectrophotometer using KBr disc technique (wavenumbers in cm⁻¹). The ¹H NMR spectra were recorded on a Varian EM-390 90 MHz ¹H NMR spectrometer using TMS as internal standard; chemical shifts are given in ppm (δ -scale). Yields, melting points and analytical data of all reported compounds are given in Table I.

```
3-Cyano-quinolin-2(1H)-thione (II)
```

A mixture of I (ref.⁴, 1.5 g, 8 mmol) and thiourea (0.76 g, 10 mmol), in dry methanol (25 ml) was heated under reflux for 3 h. The separated yellow crystalline solid was collected, washed with ethanol and heated with aqueous sodium hydroxide 10% (15 ml) at 80 °C for 15 min. On cooling and acidification, the quinolinethione (II) was obtained as a yellow powder and was crystallized from N,N-dimethylformamide-water as yellow needles. ¹H NMR spectrum (CD₃SOCD₃): 14.10 (s, 1H, NH); 8.64 (s, 1H, CH-quinoline at C-4); 7.20 - 8.00 (m, 4H, aromatic). IR spectrum: 3 100 (NH), 2 230 (C=N), 1 230 (C=S).

3-Amino-2-aroyl-thieno[2,3-b]quinolines IVa - IVc

A mixture of II (1.86 g, 10 mmol) and the appropriate ω -bromoacetophenone (10 mmol) in ethanol (30 ml), triethylamine (2 ml) was added. The mixture was refluxed for 2 h. The red precipitate thus formed was collected and recrystallized from ethanol-chloroform mixture as fine red plates. IR spectra of IVa - IVc showed characteristic absorption bands at 3 340, 3 240 for (NH₂) and at 1 620 for (C=O).

3-Amino-2-[3-nitro-4-(p-tolylthio)benzoyl]thieno[2,3-b]quinoline IVd

This compound was synthesized in analogy to the method described above by reaction of II and 3-nitro-4-(*p*-tolylthio)phenacyl bromide⁵ (III). The product was recrystallized from ethanol as orange crystals. ¹H NMR spectrum (CD₃SOCD₃): 9.30 (s, 1H, CH-quinoline); 7.30 – 8.80 (m, 11H, aromatic); 6.80 (s, 2H, NH₂); 2.30 (s, 3H, CH₃). IR spectrum: 3 340, 3 240 (NH₂); 1 620 (C=O).

2-Arylcarbamoylmethylthioquinoline-3-carbonitriles Va - Vc

To a suspension of II (1.86 g, 10 mmol) and anhydrous sodium acetate (1.25 g, 15 mmol) in ethanol (30 ml), the appropriate chloroacetanilide (10 mmol) was added. The reaction mixture was refluxed for 2 h. On cooling, the precipitate was collected and recrystallized from ethanol in the form of white needles.

Compound Va. ¹H NMR spectrum (CDCl₃): 9.90 (s, 1H, CONH and exchangeable with D_2O); 8.90 (s, 1H, CH at C-4); 7.20 - 8.20 (m, 9H, aromatic); 4.40 (s, 2H, SCH₂). The IR spectra of compounds Va - Vc showed characteristic absorption hands at 3 300 - 3 250 for (NH), at 2 210 for (C=N) and at 1 680 - 1 670 for (C=O).

3-Amino-2-arylcarbamoyl-thieno[2,3-b]quinolines VIa - VIc

A) Compounds Va - Vc (10 mmol) in ethanol (40 ml) containing dissolved sodium (10 mg) were refluxed for 10 min. The solids obtained after cooling were recrystallized from ethanol-chloroform mixture as golden yellow prisms of VIa - VIc. The IR spectra of VIa - VIc exihibt characteristic bands at 3 400, 3 300 for (NH₂); at 3 190 (NH) and at 1 620 for (C=O).

B) A mixture of II (1.86 g, 10 mmol) and the respective chloroacetanilide (10 mmol) in sodium ethoxide solution (500 mg sodium in 50 ml ethanol) was refluxed for 1 h. The solids obtained upon recrystallized were identical to those described in method A). 3-Aryl-3,4-dihydro-4-oxo-1,2,3-triazino[4',5':4,5]thieno[2,3-b]quinolines VIIa - VIIc

To a solution of VIa - VIc (9 mmol) in concentrated hydrochloric acid (5 ml) and glacial acetic acid (5 ml) was added 10% sodium nitrite solution (7 ml, 10 mmol) at 0 °C during 5 min with stirring. The white product thus formed was collected and crystallized from chloroform as fine white needles. The IR spectra of VIIa - VIIc showed absorption band at 1 690 characteristic for (C=O, triazinone).

3-Aryl-3,4-dihydro-4-oxopyrimido[4',5':4,5]thieno[2,3-b]quinolines VIIIa - VIIIc

A mixture of VIa - VIc (10 mmol) and triethyl orthoformate (2 ml, 12 mmol) in acetic anhydride (20 ml) was refluxed for 4 h. The crystalline solid thus formed was collected and recrystallized from ethanol as white needles.

Compound VIIIc. ¹H NMR spectrum (CDCl₃): 9.80 (s, 1H, CH-pyrimidinone); 8.70 (s, 1H, CH-quinoline at C-11); multiplet at 7.20 - 8.60 (8H, aromatic). The IR spectra of compounds VIIIa - VIIIc showed absorption band at 1 670 characteristic for (C=O, pyrimidinone).

3-Aryl-4-oxo-1,2,3,4-tetrahydro-2-thioxopyrimido[4',5':4,5] thieno[2,3-b] quinolines IXa - IXc

A mixture of VIa - VIc (5 mmol) and carbon disulfide (4 ml, 66.5 mmol) in dry pyridine (30 ml) was heated on a water bath for 8 h; during the reaction time hydrogen sulfide was evolved. The solvent was distilled off in vacuum and the residue was crystallized from pyridine as fine yellow needles of IXa - IXc. The IR spectra of these compounds exhibit characteristic absorption bands at 3 100 for (NH) and at 1 680 for (C=O).

3-Aryl-2-ethylthio-3,4-dihydro-4-oxopyrimido[4',5':4,5]thieno[2,3-b]quinolines Xa - Xc

Compound IXa - IXc (4 mmol) was dissolved in ethanolic sodium hydroxide solution 4% (20 ml). To this solution ethyl iodide (0.4 ml, 5 mmol) was added and the resulting mixture was refluxed for 1 h. On cooling and dilution with water, the solid formed was collected and crystallized from ethanol as pale yellow needles.

Compound Xb. ¹H NMR spectrum (CDCl₃): 9.40 (s, 1H-quinoline at C-11); 7.80 - 8.40 (s, 4H, aromatic protons of quinoline nucleus); 6.90 - 7.30 (dd, 4H, aromatic); 3.80 (s, 3H, OCH₃); 3.20 - 3.40 (q, 2H, CH₂); 1.30 - 1.50 (t, 3H, CH₃). The IR spectra of compounds Xa - Xc revealed the presence of absorption band at 1 670 characteristic for (C=0, pyrimidinone).

Reaction of 3-Amino-2-arylcarbamoylthieno[2,3-b]quinolines VIa - VIc with Acetic Anhydride

A mixture of VIa - VIc (10 mmol) and acetic anhydride (50 ml) was refluxed for 4 h. The reaction mixture was concentrated and allowed to cool. The product precipitated was filtered off and recrystallized from ethanol as white needles. This product was identified as 2-methyl-4-oxo-oxazino[4',5':4,5]thieno[2,3-b]quino-line (XI). ¹H NMR spectrum (CDCl₃): 8.30 (s, 1H, CH-quinoline at C-11); 7.30 - 7.90 (m, 4H, aromatic); 2.10 (s, 3H, CH₃). IR spectrum showed absorption band at 1 740 characteristic for (C=O, lactone).

The filtrate from the above crude product was diluted with water whereby a white solid was precipitated which upon purification assigned as the corresponding acetanilide XIIa - XIIc.

3-Aryl-2-methyl-3,4-dihydro-4-oxopyrimido[4',5':4,5]thieno[2,3-b]quinolines XIIIa - XIIIc

A mixture of oxazinone XI (1.43 g, 5 mmol) and the respective aromatic amine (5 mmol) in glacial acetic acid (20 ml) was refluxed for 4 h. The reaction mixture was cooled and diluted with water whereby a white solid precipitated. It was filtered off and crystallized from ethanol as white needles.

Compound XIIIb. ¹H NMR (CDCl₃): 8.90 (s, 1H, CH-quinoline); 6.90 - 8.20 (m, 8H aromatic); 3.80 (s, 3H, OCH₃); 2.30 (s, 3H, CH₃). The IR spectra of compounds XIIIa - XIIIc exhibited characteristic absorption band at 1 680 for (C=O, pyrimidinone).

Com- pound	M. p., °C	Yield, %	Formula (M. w.)	Calculated / Found				
				% C	% H	% N	% S	% CI
II	>300"	95	C10H6N2S	64.50	3.25	15.04	17.22	-
			(186.2)	64.63	3.10	15.00	17.30	-
[Va	250 - 251	79	C ₁₈ H ₁₂ N ₂ OS (304.4)	71.03 70.88	3.97 3.94	9.20 9.27	10.53 10.83	-
IVЪ	275 – 277	80	C19H14N2OS (318.4)	71.68 71.50	4.43 4.49	8.80 8.92	10.07 10.00	-
IVc	340 - 342	86	C ₁₈ H ₁₁ BrN ₂ OS (383.3)	56.41 56.75	2.89 2.91	7.31 7.30	8.37 8.50	_b _b
IVd	195 – 198	73	C ₂₅ H ₁₇ N ₃ O ₃ S ₂ (471.5)	63.68 63.53	3.63 3.70	8.91 9.16	13.60 13.36	-
Va	225 – 226	87	C ₁₈ H ₁₃ N ₃ OS (319.4)	67.69 67.64	4.10 4.28	13.16 13.13	10.04 10.00	
Vb	>300	90	C19H15N3O2S (349.4)	65.31 65.49	4.33 4.58	12.03 11.98	9.18 9.25	-
Vc	233 – 234	84	C ₁₈ H ₁₂ ClN ₃ OS (353.8)	61.10 61.35	3.42 3.41	11.88 11.72	9.06 9.00	-
VIa	266 – 268	95° 79 ^ª	C ₁₈ H ₁₃ N ₃ OS (319.4)	67.69 67.45	4.10 4.15	13.16 12.97	10.04 10.30	
VIb	245 – 246	97 ^c 78 ^d	C ₁₉ H ₁₅ N ₃ O ₂ S (349.4)	65.31 65.01	4.33 4.46	12.03 11.79	9.18 9.06	-
VIc	288 - 290	94 ^c 80 ^d	C ₁₈ H ₁₂ CIN ₃ OS (353.8)	61.10 61.19	3.42 3.40	11.88 12.07	9.06 9.00	10.02 9.70
VIIa	290 – 291	81	C ₁₈ H ₁₀ N ₄ OS (330.4)	65.44 65.62	3.05 3.03	16.96 16.82	9.70 9.50	-
VIIb	295 – 297	78	C ₁₉ H ₁₂ N4O ₂ S (360.4)	63.32 63.00	3.36 3.27	15.55 15.38	8.90 9.00	-
VIIc	>300	76	C ₁₈ H9ClN4OS (364.8)	59.26 59.29	2.49 2.46	15.36 15.15	8.79 8.70	9.72 10.00

TABLE I Yields, melting points and analytical data of the synthesized compounds

Collect. Czech. Chem. Commun. (Vol. 57) (1992)

TABLE	
-------	--

(Continued)

Com- pound	М. р., °С	Yield, %	Formula (M. w.)	Calculated / Found				
				% C	% H	% N	% S	% CI
VIIIa	290 – 292	82	C ₁₉ H ₁₂ N ₃ OS (329.4)	69.29 69.51	3.37 3.30	12.76 12.73	9.73 9.60	-
VIIIb	>300	89	C ₂₀ H ₁₃ N ₃ O ₂ S (359.4)	66.84 67.03	3.65 3.65	11.69 11.82	8.92 8.90	-
VIIIc	>300	85	C19H10CIN3OS (363.8)	62.73 62.55	2.77 2.69	11.55 11.63	8.81 9.00	9.74 10.00
IXa	>300	76	C19H11N3OS2 (361.4)	63.14 63.28	3.07 3.05	11.63 11.70	17.74 17.62	-
IXb	>300	73	C ₂₀ H ₁₃ N3O2S2 (391.5)	61.37 61.45	3.35 3.31	10.73 10.89	16.38 16.20	-
lXc	>300	77	C19H10CIN3OS2 (395.9)	57.65 57.50	2.55 2.56	10.61 10.50	16.20 16.10	8.96 9.06
Xa	238 – 239	80	C ₂₁ H ₁₅ N ₃ OS ₂ (389.5)	64.76 64.82	3.88 3.84	10.79 10.63	16.46 16.50	-
ХЬ	266 - 267	82	C ₂₂ H ₁ 7N3O2S2 (419.5)	62.99 62.87	4.08 4.06	10.02 10.31	15.28 15.35	-
Хс	>300	80	C ₂₁ H ₁ 5ClN3OS ₂ (423.9)	59.50 60.00	3.33 3.39	9.91 9.85	15.13 15.00	8.36 8.50
XI	277 - 280	80 – 85 ^e	C ₁₄ H ₈ N ₂ O ₂ S (268.3)	62.68 62.91	3.01 3.00	10.44 10.35	11.95 12.07	-
XIIIa	284 – 286	81	C ₂₀ H ₁₃ N3OS (343.4)	69.95 69.76	3.82 3.81	12.24 12.40	9.34 9.30	-
XIIIb	267 - 268	80	C ₂₁ H ₁ sN ₃ O ₂ S (373.4)	67.55 67.83	4.05 4.09	11.25 11.21	8.59 9.00	-
XIIIc	282 – 284	83	C ₂₀ H ₁₂ ClN ₃ OS (377.8)	63.58 63.41	3.20 3.15	11.12 11.00	8.49 8.24 ·	9.38 9.50

^a Literature⁶ gives m.p. 290 °C. ^b Calculated: 20.85% Br; found: 21.00% Br. ^c Yields of method A). ^d Yields of method B). ^e Yield ranged from 80% to 85%.

REFERENCES

- 1. Awad I. M., Abdel-Rahman A. E., Bakhite E. A.: Phosphorus Sulfur Silicon 57, 293 (1991).
- 2. Abdel-Rahman A. E., Awad I. M., Bakhite E. A.: Phosphorus Sulfur Silicon 60, 189 (1991).
- 3. Awad I. M., Abdel-Rahman A. E., Bakhite E. A.: Collect. Czech. Chem. Commun. 56, 1749 (1991).
- 4. Neelima, Bhat B. K., Bhaduri A. P.: Z. Naturforsch., B 40, 63 (1985).
- 5. Radwan Sh. M.: Collect. Czech. Chem. Commun., in press.
- 6. Ikuo I., Kenner C. R.: J. Heterocycl. Chem. 15, 1527 (1978).